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Bulk and shear viscosities in lattice Boltzmann equations

Paul J. Dellar*
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,

Cambridge CB3 9EW, United Kingdom
~Received 14 October 2000; revised manuscript received 17 May 2001; published 27 August 2001!

Lattice Boltzmann equations~LBE! are a useful tool for simulating the incompressible Navier-Stokes equa-
tions. However, LBE actually simulate acompressiblebut usually isothermal fluid at some small but finite
Mach number. There has been recent interest in using LBE at larger, but still subsonic, Mach numbers, for
which the viscous terms in the resulting momentum equation depart appreciably from those in the compressible
Navier-Stokes equations. In particular, the isothermal constraint implies a nonzero ‘‘bulk’’ viscosity in addition
to the usual shear viscosity. This difficulty arises at the level of the isothermalcontinuumBoltzmann equation
prior to discretization. A remedy is proposed, and tested in numerical experiments with decaying sound waves.
Conversely, an enhanced bulk viscosity is found useful for identifying or suppressing artifacts in under-
resolved simulations of supposedly incompressible shear flows.
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I. INTRODUCTION

Methods based on lattice Boltzmann equations~LBE! are
a promising alternative to conventional numerical metho
for simulating fluid flows@1#. Lattice Boltzmann methods ar
straightforward to implement and have proved especially
fective at simulating flows in complicated geometries, a
for exploiting parallel computer architectures. They are m
commonly used to simulate incompressible flows throu
solving the compressible, isothermal Navier-Stokes eq
tions at small Mach numbers. The Mach number Ma5u/cs
is the ratio of the fluid speedu to the sound speedcs . When
the Mach number is small, temperature and density fluc
tions areO~Ma2! so the flow is approximately isothermal an
incompressible.

The most common lattice Boltzmann scheme, which
pands the exact Maxwell-Boltzmann equilibrium distributi
to second order in Mach number and uses a Bhatna
Gross-Krook~BGK! approximation@2# to the collision term,
contains a spurious term ofO~Ma3! @3# that limits its appli-
cation to small Mach number flows. The spurious term m
be eliminated by expanding the equilibrium distribution
higher order in Ma and using a more complicated latt
@4,5#. However, the viscous stresses still differ byO~Ma2!
from what is normally meant by the ‘‘Navier-Stokes equ
tions’’ because the bulk viscosity is nonzero. In particul
the viscous stresses differ byO~Ma2! from those calculated
from the Boltzmann equation for a dilute monatomic g
This difference is particularly relevant to recent efforts th
have extended lattice Boltzmann schemes to finite, but
subsonic, Mach numbers@4–6#.

In this paper we propose a modified lattice Boltzma
scheme that allows the bulk viscosity to be adjusted, an
be set equal to zero if desired. This allows an accurate si
lation of compressible flows, though still with an isotherm
equation of state. An ability to adjust the bulk viscos
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should also be a useful addition to nonisothermal latt
Boltzmann schemes, or for simulating materials other th
dilute monatomic gases. Sterling and Chen@6# have already
proposed a modified equilibrium distribution that included
adjustable effect resembling bulk viscosity. However, th
deviatoric stress contained terms proportional to“r. Their
scheme thus approximates continuum equations that d
from the compressible Navier-Stokes equations, though t
do coincide in the small Mach number limit.

The compressible Navier-Stokes equations may be wri
in the form

] tr1“•~ru!50, ~1a!

] t~ru!1“•~pI1ruu!5“•s8, ~1b!

wherer, u, and p are the density, velocity, and thermod
namic pressure, respectively. Viscous effects appear via
deviatoric stresss8, sometimes denoted byt @7#, which is
conventionally placed on the right hand side of Eq.~1b!. In
general, the pressurep is a function of the temperatureu,
representing internal energy, as well as density, so the
equations above must be supplemented by an evolu
equation for the temperature@8#,

~] t1u•“ !u1
2

3
u“•u52“•q. ~2!

We have writtenu5kT, with k being Boltzmann’s constan
andT the conventional temperature. The heat fluxq is nor-
mally taken to beq52K“u, where the thermal conductiv
ity K may depend on bothr andu.

On the assumptions that the deviatoric stress is line
and isotropically related to the local velocity gradient tens
“u, and vanishes for rigid rotations, the deviatoric stre
must take the generic form@7,9,10#

sab8 5mS ]aub1]bua2
2

3
dab“•uD1m8dab“•u. ~3!//
©2001 The American Physical Society03-1
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PAUL J. DELLAR PHYSICAL REVIEW E 64 031203
We follow Chen and Doolen@1# in using Greek indices for
vector components, reserving Roman indices for labe
discrete lattice vectors. Herem andm8 are the first, or shear
and second, or bulk, dynamic viscosity coefficients, resp
tively. These coefficients are material properties, and in g
eral will be functions of the local density and temperatu
but it is worth emphasizing that Eq.~3! depends on the gra
dient of the velocityu, and not on the gradient of the mo
mentumru. Fluids for which the deviatoric stress takes th
form are often called Newtonian fluids. In particular, t
fluid simulated by Sterling and Chen’s@6# lattice Boltzmann
scheme is not a Newtonian fluid for this reason.

The topic of bulk viscosity is complicated by differen
authors attaching different meanings to terms like ‘‘pressu
and ‘‘bulk viscosity’’ @11#. We follow the conventions of
Landau and Lifshitz@9#, since their terminology is compat
ible with that normally used in the lattice Boltzmann liter
ture. They rewrite the Navier-Stokes momentum equat
~1b! in conservative form as

] t~ru!1“•P50, ~4!

where the tensorP5pI1ruu2s8 is the total momentum
flux. The total stresss52pI1s8 includes an additiona
isotropic contribution from the thermodynamic pressurep.
The deviatoric stress is not necessarily traceless with th
definitions, Trs8Þ0 in general, since the normal stress m
differ from the thermodynamic pressure.

According to Landau and Lifshitz@9#, the word ‘‘pres-
sure’’ means the thermodynamic pressure, given byp5ur
for a perfect gas. The ‘‘bulk viscosity’’ or ‘‘second viscosit
coefficient’’ multiplies any isotropic term in the deviator
stress in addition to the traceless term present in an i
monatomic gas. This differs from the convention used
Batchelor@12# and Lamb@13#, whose ‘‘pressure’’ is the me
chanical pressure, meaning minus one-third the trace of
stress tensor, so them8 term in Eq.~3! is absorbed into the
‘‘pressure.’’Also Cercignani@14# and Tritton@7# use the term
‘‘bulk viscosity’’ for the combinationm82(2/3)m that mul-
tiplies “•u in Eq. ~3!. Thus dilute monatomic gases (m8
50) have negative bulk viscosity in this terminology.

To complicate matters further, expressions of the form

]bsab8 5]b@m]bua1~m81m/3!]aub# ~5!

sometimes appear in the literature, with the combinat
m81m/3 labeled the ‘‘bulk viscosity’’@5#. This is only a
correct rearrangement of Eq.~3! when the combined coeffi
cient m822m/3 is spatially uniform, i.e.,“(m822m/3)
50. This holds for the particular case of an isothermal flu
using the BGK approximation with collision timet }r21, as
in Sec. V below, but does not hold in general. In the gene
case, use of Eq.~5! instead of Eq.~3! implies a spurious
generation of angular momentum via spatial gradients in
viscosity coefficients.

Equations~1! and ~2!, with particular values form, m8,
and K, may be systematically derived from the continuu
Boltzmann equation that describes a dilute gas of monato
particles undergoing binary collisions@8,14,15#. This deriva-
tion employs a multiple scales expansion, the Chapm
03120
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Enskog expansion, which seeks solutions that are slo
varying on the length and timescales associated with par
collisions. However, the Navier-Stokes equations with m
general forms ofm, m8, andK are often justified empirically
for a much wider range of materials than dilute monatom
gases, such as liquids@7,9,10,12,13#.

In particular,m850 for a dilute monatomic gas, which i
one justification for writing Eq.~3! in the form given, where
the term proportional to the first viscositym has no trace.
Thus a nonzerom8 implies a deviation in material propertie
from those of a dilute monatomic gas. Physically, a mate
with m850 is characterized by a lack of viscous dissipati
under purely isotropic expansion or contraction. We note t
m8>0 is required for mechanical stability. A nonzero valu
for m8, along with modified values form and K, has been
derived by Choh@16,17# from the Bogoliubov-Born-Green
Kirkwood-Yvon hierarchy, which models nondilute gas
@8,14,17#.

Lattice Boltzmann equations are usually used to simu
the incompressible Navier-Stokes equations, which foll
from the compressible Navier-Stokes equations in the li
of small Mach number, Ma5uuu/cs→0, where cs is the
sound speed. If we rewrite the continuity equation~1a! to
resemble the temperature equation,

~] t1u•“ !r1r“•u50, ~6!

the terms proportional to“•u in Eqs. ~6! and ~2! are both
O~Ma2!. Thus an initial state with constant valuesr0 andu0
will be preserved to an accuracy ofO~Ma2!, i.e., r(x,t)
5r01O~Ma2! andu(x,t)5u01O~Ma2!. Most lattice Boltz-
mann formulations in fact assume that the temperature
exactly constant,u(x,t)5u0 , and adopt the isothermal equa
tion of statep5cs

2r, with constant sound speedcs @1,3#.
Here cs is the isothermal or Newtonian sound speed,cs

2

5dp/dr at constant temperature, rather than at constant
tropy @13#. However, we show below that the isothermal a
sumptionu5u0 changes the form of the deviatoric stress,
well as the equation of state as intended. While this chang
itself O~Ma2!, it becomes relevant when lattice Boltzman
equations are used to simulate flows in the finite Mach nu
ber regime. Moreover, it appears to be significant in und
resolved lattice Boltzmann simulations of supposedly inco
pressible flows.

II. THE CONTINUUM BOLTZMANN EQUATION

We consider the continuum Boltzmann BGK equati
@8,14,15,17#,

] t f 1j•“ f 52
1

t
~ f 2 f ~0!!, ~7!

where f (x,j,t) is the single-particle distribution function
and j the microscopic particle velocity. The original con
tinuum Boltzmann equation employed an integral opera
on the right hand side, which models binary collisions in
dilute monatomic gas. We have replaced this term by
BGK approximation@2#, in which f relaxes towards an equi
3-2
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BULK AND SHEAR VISCOSITIES IN LATTICE . . . PHYSICAL REVIEW E 64 031203
librium distribution f (0) with a single relaxation timet. The
Maxwell-Boltzmann equilibrium distribution in three dimen
sions is

f ~0!5
r

~2pu!3/2expS 2
uj2uu2

2u D , ~8!

wherer, u, andu are the macroscopic density, velocity, a
temperature as above. We have scaled velocities so tha
isothermal sound speedcs5u1/2. The three macroscopi
quantities are defined via moments of the distribution fu
tion f,

r5E f dj, ru5E jf dj, ru5
1

3 E uj2uu2f dj,

~9!

where the integrals with respect toj are taken over all ofR3.
We observe that the equilibrium distributionf (0) depends on
the coordinatesx and t only through thex and t dependence
of r, u, andu.

For givenr, u, and u, the Maxwell-Boltzmann distribu-
tion is the distribution that minimizes the Boltzmann entro
functional H5* f ln(f )dj. The simplified BGK collision
term on the right hand side of Eq.~7!, like Boltzmann’s
original binary collision term, drives the distribution functio
f towards a local Maxwell-Boltzmann equilibrium distribu
tion f (0) while preserving the local density, momentum, a
temperature~internal energy!. Thus the three moments~9!
still hold if f is replaced byf (0). These properties are all tha
are required to reproduce the Navier-Stokes equations.
momentum flux tensorP, and the equilibrium momentum
flux tensorP(0), are given by the complete second mome
tensors off and f (0) respectively,

P5E jjf dj, P~0!5E jjf ~0! dj5urI1ruu. ~10!

The second moment tensor is not conserved by either
BGK or the Boltzmann binary collision term. In fact, it is th
differences85P(0)2P that gives rise to a deviatoric stres
and thus to viscous dissipation.

A. Chapman-Enskog expansion

The Navier-Stokes equations may be derived from m
ments of the continuum Boltzmann equation in the limit
slow variations in space and time via a Chapman-Ens
expansion@8,15,17#. The Chapman-Enskog expansion intr
duces a small parametere into the collision time, so that Eq
~7! becomes

] t f 1j•“ f 52
1

et
~ f 2 f ~0!!. ~11!

Thus spatial and temporal derivatives appear at lower o
in e than the collision term. The parametere may be identi-
fied physically with the dimensionless mean free path,
Knudsen number, but its purpose is to order the terms in
expansion that avoids the moment closure problem, wh
03120
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plagues hydrodynamic turbulence. Only moments of
known equilibrium distributionf (0) and their derivatives in
space and time are needed. In fact,e may be absorbed into
the collision timet and so set equal to unity in the formula
below.

We pose a multiple scale expansion of bothf andt, but not
x, in powers ofe,

f 5 f ~0!1e f ~1!1e2f ~2!1¯ , ~12!

] t5] t0
1e] t1

1¯ ,

where we may think oft0 and t1 as advective and diffusive
~viscous! timescales, respectively. We impose the two so
ability conditions

E f ~n!dj5E jf ~n!dj50, for n51,2, . . . . ~13!

Thus the higher order termsf (1), f (2),... do notcontribute to
the macroscopic density or momentum. These constra
which reflect local mass and momentum conservation un
collisions, lead to evolution equations for the macrosco
quantities.

Substituting the expansions~12! into the rescaled Boltz-
mann equation~11!, we obtain

~] t0
1j•“ ! f ~0!52

1

t
f ~1!, ~14a!

] t1
f ~0!1~] t0

1j•“ ! f ~1!52
1

t
f ~2!, ~14b!

at O(1) and O(e). Taking the first two moments,*(•)dj
and*(•)j dj, of Eq. ~14a! we obtain

] t0
r1“•~ru!50, ] t0

~ru!1“•P~0!50, ~15!

wherer, u, andP(0) are defined in Eqs.~9! and ~10!. The
right hand sides vanish by virtue of the solvability conditio
~13!. These two equations are equivalent to the Euler eq
tions for an inviscid fluid, namely Eqs.~1a! and ~1b! with
s850. Similarly, we obtain

] t1
r50, ] t1

~ru!1“•P~1!50, ~16!

at next order ine, from the same two moments of Eq.~14b!
and the solvability conditions. Neglecting terms ofO(e2),
Eqs.~15! and ~16! combine to give

] tr1“•~ru!50, ] t~ru!1“•~P~0!1eP~1!!50,
~17!

which are equivalent to Eqs.~1a! and ~4!. The deviatoric
stresss852eP(1), to this order of approximation.

An equation for the first correction stressP(1) follows
from the second moment*(•)jj dj of Eq. ~14a!,

] t0
P~0!1“•S E jjjf ~0! djD52

1

t
P~1!. ~18!
3-3
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PAUL J. DELLAR PHYSICAL REVIEW E 64 031203
The third moment of the equilibrium distributionf (0) is
given by

E jajbjg f ~0!dj5ruaubug1ur~uadbg1ubdga1ugdab!,

~19!

and we can compute] t0
P(0) from the leading order time

derivatives ofr, u, andu,

] t0
Pab

~0!5] t0
~urdab1ruaub!5] t0

~ur!dab1ua] t0
~rub!

1ub] t0
~rua!2uaubd t0

r, ~20!

so Eq.~18! in fact gives an explicit expression forP(1) in
terms of the instantaneous values ofr, u, u and their spatial
derivatives.

B. Consistent approach

In the consistent approach@8,15#, an evolution equation
for the temperatureu is obtained by imposing a third solv
ability condition,

E uj2uu2f ~n!dj50, for n51,2, . . . , ~21!

which reflects conservation of the internal energyru under
collisions. From the trace of Eq.~18! we obtain an energy
equation in the form

] t0S 3

2
ur1

1

2
ru2D1]gS 1

2
ru2ug1

5

2
ruugD52

1

2t
Paa

~1! .

~22!

The right hand side vanishes using the three solvability c
ditions ~13! and ~21! together with the identityuj2uu2
5j•j22j•u1u•u. The kinetic energy term (1/2)ru2 may
be eliminated using the continuity and momentum equatio
leading to the internal energy equation

] t0S 3

2
ru D1“•S 3

2
ruuD1ur“•u50, ~23!

which is equivalent to the temperature equation~2! with K
50, using the continuity equation~1a!.

Using this new equation, along with Eq.~15!, to eliminate
the time derivatives] t0

in Eq. ~20!, we obtain@8,15#

Pab
~1!52tuS ]aub1]bua2

2

3
dab“•uD . ~24!

Thus the deviatoric stresss852eP(1), is of the form ~3!
with m5etu andm850. The absence of the second visco
effect, or the fact that Trs850, is a direct consequence o
internal energy conservation under collisions, as expres
by the temperature solvability condition~21!.

An equation for] t1
u, where thermal conduction appear

may be found from theuj2uu2 moment of Eq.~14b!. The
03120
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s
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additional term takes the expected formq52K“u, where
K5(5/2)m5(5/2)rut for the BGK approximation.

C. Isothermal approximation

As discussed in the Introduction, most lattice Boltzma
formulations take the temperature to be exactly constanu
5u0 , rather than allowing it to vary byO(Ma2) in response
to a nonzero divergence“•u. Thus the solvability condition
~21! for the temperature, which in fact represents conser
tion of energy under collisions, is replaced by the constr
u5u0 .

In this case the terms arising from] t0
u and “u in the

earlier calculation are missing, so now Eq.~18! simplifies to
@3,18,19#

Pab
~1!52tur~]aub1]bua!. ~25!

The deviatoric stresss852eP(1) is still of the form ~3!
with first viscosity coefficientm5etru as before, but now
there is a nonzero second viscosity coefficientm85(2/3)m.

By direct calculation, TrP(1)522tur“•u, so the ana-
logue of Eq.~23! acquires a nonzero right hand side,

] t0S 3

2
ru D1“•S 3

2
ruuD1ur“•u52

1

2t
Tr P~1!,

~26!

which exactly cancels theur“•u forcing term. The internal
energy equation is now exactly satisfied byu being constant,
since it then coincides with the continuity equation~1a!.

III. FROM CONTINUUM BOLTZMANN
TO LATTICE BOLTZMANN

Although lattice Boltzmann equations were first co
structed as empirical extensions of the earlier lattice gas
tomata@20# to continuous distribution functions@21,22#, they
may also be derived systematically by truncating the c
tinuum Boltzmann equation in velocity space@23–26#. This
derivation determines several otherwise arbitrary consta
in the construction@18,26#. A lattice Boltzmann equation
with a Coriolis force also arises naturally from the analogo
derivation in a rotating frame@19#.

As lattice Boltzmann equations are normally used
simulate fluids at low Mach numbers, it is usual to expl
the small Mach number to expand the exact equilibrium d
tribution f (0) up to second order in the macroscopic veloc
u. Recall that we have scaled velocities so thatcs5u1/2 is
O(1) so uuu5O(Ma)!1. We replace the exact Maxwell
Boltzmann distribution~8! by

f ~0!5rw~j!S 11
j•u

u
1

~j•u!2

2u2 2
u2

2u D1O~u3!, ~27!

wherew(j) is the weight function

w~j!5~2pu!23/2exp~2j2/2u!. ~28!
3-4



s

-

f
b

e

d

ra

si

m

n
lle

e

s-
d di-

we

ith

for
ed
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The ruuu term in the exact third moment*jjjf (0)dj as
calculated in Eq.~19! above disappears whenf (0) is replaced
by its truncated form~27!. Thus the two deviatoric stresse
calculated above each acquire an extra term2t“•(ruuu)
@3#. Since this extra term isO~Ma3! it only becomes appre
ciable in the finite Mach number regime@5#.

With the expanded form~27! of the equilibrium distribu-
tion f (0), the integrals appearing in Eqs.~9!, ~10!, and ~19!
are all of the form

E pn~j!w~j!dj, 0<n<5, ~29!

wherepn(j) denotes a polynomial of degreen in the com-
ponents ofj. He and Luo@23,24# realized, in the context o
lattice Boltzmann equations, that these integrals may
evaluated as sums using Gaussian quadrature formulas,

E pn~j!w~j!dj5(
i 50

N

wip~ji !. ~30!

The pointsji are known as quadrature points, and the co
ficientswi are the corresponding weights@27#. The numberN
of quadrature points required depends on the maximum
gree n of the polynomial, and the dimensionD of the j
space.

Only the values of the distribution function at the quad
ture pointsji need to be evolved inx and t, since these
values are sufficient to evaluate the required moments u
Eq. ~30!. Thus the continuum Boltzmann equation~7! may
be replaced by the lattice Boltzmann equation,

] t f i1ji•“ f i52
1

t
~ f i2 f i

~0!! for i 50, . . . ,N, ~31!

where f i(x,t)5wi f (x,ji ,t)/w(ji) @compare Eqs.~27! and
~35!#, and the macroscopic quantities of density, momentu
and momentum flux are now given by

r5(
i 50

N

f i , ru5(
i 50

N

ji f i , P5(
i 50

N

jiji f i . ~32!

Two dimensional, nine speed lattice Boltzmann equation

The most common quadrature formula in two dimensio
(D52) uses nine quadrature points, leading to the so-ca
nine speed lattice Boltzmann model@1,3,18#. If we take the
temperatureu51/3, the quadrature points lie on an integ
lattice,

ji5H ~0,0!, i 50

„sin@~ i 21!p/2#,cos@~ i 21!p/2#…, i 51,2,3,4

&„sin~@2i 21!p/4#,cos@~2i 21!p/4#…, i 55,6,7,8.
~33!

The corresponding weight factors are
03120
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wi5H 4/9, i 50

1/9, i 51,2,3,4

1/36, i 55,6,7,8,

~34!

and the discrete equilibrium distributions functions are

f i
~0!5wirS 113ji•u1

9

2
~ji•u!22

3

2
u2D . ~35!

Although the results follow from the construction via Gaus
ian quadratures, the required moments may be evaluate
rectly with the aid of identities such as@18#

(
i 50

8

wiji50, (
i 50

8

wijiji5
1

3
I , (

i 50

8

wijijiji50. ~36!

IV. FULLY DISCRETE LATTICE BOLTZMANN
EQUATION

To achieve a fully discrete lattice Boltzmann equation
must approximate Eq.~31! in x and t. Integrating Eq.~31!
along a characteristic for a time intervalDt, we obtain

f i~x1jiDt,t1Dt !2 f i~x,t !52
1

t E0

Dt

f i~x1jis,t1s!

2 f i
~0!~x1jis,t1s!ds.

~37!

The integral may be approximated by the trapezium rule w
second order accuracy, thus

f i~x1jiDt,t1Dt !2 f i~x,t !52
Dt

2t
@ f i~x1jiDt,t1Dt !

2 f i
~0!~x1jiDt,t1Dt !

1 f i~x,t !2 f i
~0!~x,t !#

1O~Dt3!. ~38!

Unfortunately, f i
(0)(x1jiDt,t1Dt) is not known indepen-

dently of the setf i(x1jiDt,t1Dt), so Eq.~38! appears to
yield a system of coupled nonlinear algebraic equations
the f i at time t1Dt. However, the system may be render
fully explicit by a change of variables@19,28#. Introducing a
different set of distribution functionsf̄ i , defined by

f̄ i~x,t !5 f i~x,t !1
Dt

2t
@ f i~x,t !2 f i

~0!~x,t !#, ~39!

the above scheme~38! is algebraically equivalent to the fully
explicit scheme

f̄ i~x1jDt,t1Dt !2 f̄ i~x,t !

52
Dt

t1Dt/2
@ f i~x,t !2 f ~0!~x,t !#. ~40!
3-5
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The macroscopic density, momentum, and momentum
are readily reconstructed from moments of thef̄ i ,

r5(
i 50

N

f̄ i , ru5(
i 50

N

ji f̄ i ,

~41!

S 11
Dt

2t DP5(
i 50

N

jiji f̄ i1
Dt

2t
P~0!.

This formulation is equivalent to the usual constructi
based on a Taylor expansion of the discrete equation~40!,
which observes that second order accuracy may be achi
with what looks like only a first order approximation to E
~31!, by replacing the relaxation timet with t1Dt/2 @1#.
However, the variables often denotedf i appearing in the dis-
crete system are actually thef̄ i in our notation, so the non
equilibrium momentum fluxP(1) in the fully discrete system
~40! is given by

P~1!5
P̄2P~0!

11Dt/~2t!
, ~42!

rather than byP2P(0) as in the continuous system.

V. DENSITY DEPENDENT VISCOSITIES

If the Chapman-Enskog analysis of Sec. II is applied
the Boltzmann equation with Boltzmann’s original bina
collision operator instead of the BGK approximation, we fi
that the dynamic viscositym is independent of density, and
function of temperature only. This surprising result, sub
quently verified experimentally, was one of the first su
cesses of classical kinetic theory@17#. To reproduce this us
ing the BGK approximation it is necessary to make t
collision timescalet inversely proportional to the local den
sity, t}r21, and thus a function of position. The analysis
Sec. IV is unchanged, apart fromt being a functiont(x,t)
instead of a constant.

VI. ADJUSTABLE BULK VISCOSITY

We modify the bulk viscosity coefficient in the isotherm
lattice Boltzmann equation by redefining the equilibrium d
tribution functions

f i
~0!5rwi S 11

j•u

u
1

~j•u!2

2u2 2
uuu2

2u D
1wi S m8

2m
2

1

3D ~ uji u22Du!

2u2 ~Tr P~1!!. ~43!

The number of spatial dimensions isD, which appears via
Tr I5D. Thesef i

(0) are functions of$ f 1 ,...,f N% throughu
andr as before, and now also through TrP(1) as calculated
in Eq. ~46! below. The 1,j, andjjj moments of Eq.~43! are
unchanged, while thejj moment becomes
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P~0!5urI1ruu1S m8

2m
2

1

3D ~Tr P~1!!I . ~44!

Since TrP(1)522urt“•u from Eq. ~25!, the combined
momentum flux tensor becomes

P5P~0!1P~1!5urI1ruu2s8, ~45!

wheres8 is the full deviatoric stress as in Eq.~3!. The ratio
m8/m appearing in Eq.~43! may be an arbitrary function o
the local densityr.

As TrP(0) itself depends on TrP(1) via Eq.~44!, the trace
of Eq. ~42! rearranges to give

F11
Dt

2t
1DS m8

2m
2

1

3D GTr P~1!5Tr P̄2Dur2ru2,

~46!

which is the expression we used in conjunction with Eq.~43!

to computef i
(0) in terms of f̄ i . We note that in three dimen

sions with no bulk viscosity,D53 and m850, the coeffi-
cient on the left hand side of Eq.~46! is saved from vanish-
ing by theDt/(2t) term. Thus it is possible to simulate flow
with Tr s850 using this scheme.

This alteration to the equilibrium stressP(0) also changes
the perturbation stressP(1), because Eq.~18! for P(1) con-
tains the term2t] t0

P(0). However, the new term inP(0) is

only O(t), one order smaller than the other terms, so
new term inP(1) is O(t2). This new term is also one orde
smaller than the other terms inP(1), and is thus comparable
with the so-called Burnett terms involvingf i

(2) that arise at
higher order in the Chapman-Enskog expansion of the c
tinuum Boltzmann equation@14,15#. Since we aim to recove
the Navier-Stokes equations with modified bulk viscosity
truncating the Chapman-Enskog expansion atO(t), it is
consistent to neglect bothP(2) and the newt2] t0

“•u term

in P(1). We show in Sec. VII below that deviations from th
intended Navier-Stokes behavior at finitet are no worse than
for the unmodified lattice Boltzmann equation.

VII. NUMERICAL EXPERIMENTS

We performed numerical experiments to measure the b
viscosity of the two dimensional nine speed lattice Bol
mann model with the modified equilibrium distribution a
pearing in Eq.~43!. We also investigated the effect of vary
ing bulk viscosity on a nominally incompressible but unde
resolved simulation of a Kelvin-Helmholtz instability. Bot
sets of experiments were performed using periodic bound
conditions.

A. Sound waves

We measured the bulk viscosity from the rate of decay
sound waves in numerical experiments. For flows of
form r5r01r8(x,t) andu5u8(x,t) x̂, with r8 andu8 both
small, the linearized form of the Navier-Stokes equatio
~1a! and ~1b! that govern sound waves may be reduced
@13#
3-6
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] ttu5cs
2]xxu1S 4

3
n1n8D ]xxtu, ~47!

wheren5m/r0 andn85m8/r0 are the kinematic shear an
bulk viscosities, respectively. This equation has solutions
the formu(x,t)}exp(ikx1st) provideds satisfies the disper
sion relation@13#

s52S 2

3
n1

1

2
n8D k26 ikcsF12S 4

3
n1n8D 2 k2

cs
2 G1/2

.

~48!

For small amplitude waves the nonlinear terms present in
lattice Boltzmann simulation are negligible, including th
O~Ma3! nonlinear correction“•(ruuu) to the deviatoric
stress. This was verified by observing that the numerical
lutions decayed exponentially as predicted by the lin
theory. Sound waves in a hexagonal six speed lattice Bo
mann scheme were studied previously in@30#, but with an
emphasis on nonlinear steepening at finite amplitude.

Viscous dissipation of sound waves depends upon
combinationñ5(4/3)n1n8 of the shear and bulk viscos
ties, which we refer to as the effective viscosity. In Fig. 1 w
plot the ratioñm / ñ of the measured effective viscosityñm to
its intended valueñ, for varying ñ and several fixed ratios
n8/n of bulk to shear viscosities. The measured values w
computed from the decay of the energyE(t)5u21cs

2r82 by
a least squares fit of a straight line to the logarithm lnE(t).
The energy in fact decays in an oscillatory fashion, beca
viscous dissipation is proportional to the oscillatory instan
neous fluid velocity, but a simple straight line fit proved a
equate. The initial conditions wereu50 and r51
11026 sin(2px), using 64 lattice points. Simulations wit
larger values ofñ used 128 bit arithmetic, with approxi

FIG. 1. Ratio of measured to intended effective viscos
(4/3)n1n8 for sound waves, plotted against Knudsen num
Kn5Ma/Re5t/). The unmodified nine speed lattice Boltzman
scheme is equivalent ton85(2/3)n ~uppermost solid line!.
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mately 33 significant digits, so more oscillations could
followed before the sound wave decayed to the level of
merical rounding error.

The independent variable in Fig. 1 is the Knudsen num
Kn5Ma/Re5t/). Introducing dimensionless variables
which the simulation domain is of length 1, it is convenie
to choose the time unit so that a typical fluid velocity is
magnitude 1. The sound speed is then 1/Ma, and the par
speeds are)/Ma or A6/Ma. The Reynolds number is de
fined as Re51/ñ, using the effective viscosity and un
length and velocity scales, so Ma/Re5ñ/cs.

The measured effective viscosities are close to their
tended values, indicated byñm / ñ'1 in Fig. 1, for various
values of the ration8/n provided the Knudsen number is no
too large, in the sense that Ma/Re,0.03 for a 1% error, and
Ma/Re,0.01 for a 0.1% error. The curven85(2/3)n corre-
sponds to the unmodified nine speed lattice Boltzma
scheme, so the deviations introduced by the modified b
viscosity at finite Knudsen number are no worse than th
already present.

The curves in Fig. 1 are all parabolic for smallt. Since we
have divided byt in computing the ratio of the measured
intended decay rate, this implies that the deviations in
measured decay rate are due to the super-Burnett correc
at O(t3) in the Chapman-Enskog expansion@15#. This is
confirmed analytically in the Appendix. The Burnett corre
tion at O(t2), the first correction beyond Navier-Stokes,
dispersive and so only alters the frequency, not the de
rate. This correction has been found by Qian and Zhou@29#
for the unmodified nine speed lattice Boltzmann scheme
differs from the Burnett correction to the continuum Bolt
mann equation because thej 4 moment of the truncated equ
librium ~27! differs from thej 4 of the original Maxwell-
Boltzmann equilibrium~8!.

For the purposes of simulating nearly incompressi
flows, the lattice Boltzmann scheme may be made accu
for arbitrarily large ñ, corresponding to arbitrarily smal
Reynolds numbers, by making the Mach number sufficien
small. This is equivalent to taking sufficiently sma
timesteps, by comparison with the timescale set by the fl
velocity and the lattice spacing, but not by comparison w
the timescale of evolving sound waves. Demonstrating c
rect viscous dissipation of sound waves is thus quite
strenuous test because the lattice Boltzmann scheme i
tended to simulate motions that evolve on timescales m
longer than the periods of sound waves.

B. Doubly periodic shear layers

Minion and Brown@31# studied the performance of var
ous numerical schemes in under-resolved simulations of
2D incompressible Navier-Stokes equations. Their init
conditions corresponded to a perturbed shear layer,

ux5H tanh@k~y21/4!#, y<1/2

tanh@k~3/42y!#, y.1/2,
~49!

uy5d sin@2p~x11/4!#,

r
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in the doubly periodic domain 0<x, y<1. The parameterk
controls the width of the shear layers, andd the magnitude of
the initial perturbation. The shear layer is expected to roll
due to a Kelvin-Helmholtz instability excited by theO(d)
perturbation inuy . With k580, d50.05, and a Reynolds
number Re5n21510 000, the thinning shear layer betwe
the two rolling up vortices becomes under-resolved on
1283128 grid. Minion and Brown@31# found that conven-
tional numerical schemes using centered differences bec
unstable for this under-resolved flow, whereas the ‘‘robu
or ‘‘upwind’’ schemes that actively suppress grid-scale os
lations all produced two spurious secondary vortices at
thinnest points of the two shear layers.

Figure 2 shows that two spurious vortices are genera
by the nine speed lattice Boltzmann equation with unmo
fied bulk viscosity. The vorticityv5]xuy2]yux was com-
puted from the velocitiesux and uy at grid points by spec-
trally accurate differentiation. The shear layers beco
under-resolved att50.6, see top of Fig. 3, due to stretchin
as the two large vorticies roll up. This stretching is associa
with a nonzero numerical divergence,“•uÞ0, at the two
halfway points where the spurious vortices form, as show
the lower half of Fig. 3. The numerical divergence is due
a lack of spatial resolution, and not to an insufficiently sm
Mach number, since it was almost unchanged by reduc
the Mach number from 0.04 to 0.01. Moreover, the div
gence computed from TrP(1) was almost indistinguishabl
from that computed by spectrally differentiatingux anduy .

Figure 4 shows that removing the bulk viscosity,m850,
increases the strength of the spurious vortices compared
the unmodified lattice Boltzmann equation. Conversely,
hancing the bulk viscosity tom8510m successfully prevents

FIG. 2. Contours of vorticity att51 from the unmodified nine
speed lattice Boltzmann equation on a 1283128 grid with Ma
50.04 and Re510 000. Compare Fig. 8 in@31#. The contour inter-
val is Dv56.
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the formation of spurious vortices as shown in Fig. 5.
creasing the bulk viscosity further tom85100m produced
no further visible changes. This is all consistent with t
spurious vortices being caused by an apparent divergenc
the thin shear layers when they become too narrow to
resolved by the grid. The enhanced bulk viscosity acts
smooth out the flow at just those points where there is
apparent divergence, but leaves the rest of the flow alm
unaffected.

FIG. 3. Numerical vorticity~a! and divergence“•u ~b! at t
50.6 with parameters as in Fig. 2. The divergence was compu
both spectrally fromu, and from TrP(1) using Eq.~25!. The peak
divergence is 6% of the peak vorticity, and does not diminish as
Mach number is reduced from 0.04 to 0.01. Compare with Fig. 7
@31#. The contour intervals are 6 and 0.5, respectively.
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In a well-resolved 2563256 simulations the vorticity was
independent of the bulk viscosity, with a fractional variati
of 1026 for 0<m8/m<100, and showed the expected seco
order convergence in Mach number based on simulat
with Ma50.01, 0.02, and 0.04. Although there was s
some discrepancy in the two main vortices between
1283128 simulations with enhanced bulk viscosity and t
2563256 simulations, most likely due to a slight shift

FIG. 4. Vorticity contours att51. Stronger spurious vortice
form in the absence of bulk viscosity,m850. The contour interval
is Dv56.

FIG. 5. Vorticity contours att51. An enhanced bulk viscosity
m8510m, prevents the excessive thinning that leads to the form
tion of spurious vortices. An even larger bulk viscosity,m8
5100m, produced indistinguishable results. The contour interva
Dv56.
03120
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position of the vortex filaments, the discrepancy in t
stretched shear layers was almost entirely eliminated.

VIII. CONCLUSION

The usual derivation of lattice Boltzmann equations
volves replacing the temperature evolution equation in
Chapman-Enskog expansion by an isothermal assump
This introduces a bulk viscositym852m/3 into the devia-
toric stress that is not present with a consistent treatmen
the temperature. However the bulk viscosity’s contribution
the deviatoric stress is readily adjusted, or removed a
gether, by adding a term proportional to the local fluid div
gence to the discrete equilibrium distribution. This dive
gence is available at each lattice point from t
nonequilibrium parts of the distribution functions. Numeric
experiments confirm that sound waves experience the co
dissipation due to the intended bulk and shear viscosit
Deviations from the intended behavior due to a finite me
free path, i.e., a finite Knudsen number, are no worse tha
the unmodified lattice Boltzmann equation. An enhanc
bulk viscosity of the order of 10<m8/m<100 succeeded in
suppressing spurious vortices created by an under-reso
nominally incompressible flow at high Reynolds numb
This same modification could presumably be applied to ot
lattice Boltzmann schemes, such as the 17 speed schem
@5#. Sensitivity to varying bulk viscosity may be a useful a
to identifying spurious features in under-resolved simulatio
of the kind found by Minion and Brown@31#.

FIG. 6. Ratio of measured to intended effective viscos
(4/3)n1n8 for sound waves, plotted against Knudsen numb
Kn5Ma/Re5t/). Solid lines are from numerical experiments wi
decaying sound waves, as in Fig. 1, and the circles are from
eigenvalue formulation in the Appendix. The dashed lines are
O(t3) behavior from a smallt approximation to the eigenvalues
The unmodified nine speed lattice Boltzmann scheme is equiva
to n85(2/3)n ~uppermost curve!.
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APPENDIX: ANALYTICAL TREATMENT OF DECAYING
SOUND WAVES

The viscous decay of sound waves may also be form
lated as a linear eigenvalue problem of the kind conside
in @32#. This resembles previous treatments of sound wa
using the linearized continuum Boltzmann equation@14,17#.
We assume a distribution function of the form

f̄ i~x,t !5Fi
~0!1hie

ikx1st, ~A1!

whereFi
(0) is the equilibrium distribution for a rest state wit

density r0 , and thehi are small unknown constants. Th
describes a small amplitude sound wave with complex
quencys and wave numberk propagating in thex direction.
The linearized fully discrete lattice Boltzmann equation~40!
with f i

(0) given by Eq.~43!, then reduces to an eigenvalu
problem of the form

hie
ikciDx1sDt5hi2g@hi2~ f i

~0!2Fi
~0!!#, ~A2!

for s and the eigenvectorhi . The constantg5Dt/(t
1Dt/2). The term f i

(0)2Fi
(0) is a function of $h0 ,...,h8%

becausef i
(0) depends onr5r01(hj andru5(jjhj . This

function may be taken to be linear when thehi are suffi-
ciently small.
er
R

in
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s

-
d
s

-

The resulting 939 matrix eigenvalue problem is not ana
lytically tractable, but a numerical evaluation of the eige
values gives excellent agreement with the measured de
rate of sound waves in the time dependent system, as sh
in Fig. 6. This analysis also confirms that the deviations fr
the intended viscosity seen in Fig. 1 are functions oft only,
and thus of the combined parameter Ma/Re. The parab
behavior of the relative decay rate for smallt, as shown in
Fig. 1, may be captured through a perturbation expansio
the eigenvalues, which may be found exactly fort50, car-
ried up toO(t3). These results are shown as dotted lines
Fig. 6. As usual, the higher order effects leading to the B
nett and super-Burnett equations improve the agreemen
small t, at least in a periodic domain where the question
boundary conditions for the higher order differential ope
tors is straightforward, but do not provide a useful descr
tion for t5O(1) @15,32#.

In the purely one dimensional case, using the three spe
j i5$21,0,1% and weightswi5$1/6,2/3,1/6%, respectively,
the resulting eigenvalue problem for the modified syst
~40! is identical to that for the unmodified system with th
same effective viscosity (4/3)n1n8. The matrix is

1

3 S ~32g!V gV/2 2gV

2g 32g 2g

2g/V g/~2V! ~32g!/V
D , ~A3!

where V5exp(2pi/M) for a lattice with M points, andg
5Dt/(t1Dt/2) as in Eq.~A2!. Thus the finitet behavior of
the three speed one dimensional scheme with variable
viscosity is precisely the same as for the unmodified sche
with the same effective viscosity.
s

f
,

.

J.
@1# S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech.30, 329
~1998!.

@2# P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.94, 511
~1954!.

@3# Y.-H. Qian and S. A. Orszag, Europhys. Lett.21, 255 ~1993!.
@4# Y. Chen, H. Ohashi, and M. Akiyama, Phys. Rev. E50, 2776

~1994!.
@5# Y.-H. Qian and Y. Zhou, Europhys. Lett.42, 359 ~1998!, also

Institute for Computer Applications in Science and Engine
ing, NASA Langley Research Center, ICASE Report No. T
98-38.

@6# J. D. Sterling and S. Chen, J. Comput. Phys.123, 196 ~1996!,
e-print comp-gas/9306001.

@7# D. J. Tritton,Physical Fluid Dynamics, 2nd ed.~Oxford Uni-
versity Press, Oxford, 1988!.

@8# K. Huang,Statistical Mechanics, 2nd ed.~Wiley, New York,
1987!.

@9# L. D. Landau and E. M. Lifshitz,Fluid Mechanics, 2nd ed.
~Pergamon, Oxford, 1987!.

@10# K. Stewartson,The Theory of Laminar Boundary Layers
Compressible Fluids~Oxford University Press, Oxford, 1964!.

@11# L. Rosenheadet al., Proc. R. Soc. London, Ser. A226, 1
~1954!.

@12# G. K. Batchelor,An Introduction to Fluid Dynamics~Cam-
-
-

bridge University Press, Cambridge, 1967!.
@13# H. Lamb, Hydrodynamics, 6th ed. ~Cambridge University

Press, Cambridge, 1932!.
@14# C. Cercignani,The Boltzmann Equation and its Application

~Springer-Verlag, New York, 1988!.
@15# S. Chapman and T. G. Cowling,The Mathematical Theory o

Non-Uniform Gases, 3rd ed. ~Cambridge University Press
Cambridge, 1991!.

@16# S. T. Choh, Ph.D. thesis, The University of Michigan, 1958
@17# G. E. Uhlenbeck and G. W. Ford,Lectures in Statistical Me-

chanics, Lectures in Applied Mathematics~American Math-
ematical Society, Providence, 1963!, Vol. 1.

@18# S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley,
Comput. Phys.118, 329 ~1995!, e-print comp-gas/9401603.

@19# P. J. Dellar, Phys. Rev. E.~to be published!.
@20# U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett.56,

1505 ~1986!.
@21# G. McNamara and G. Zanetti, Phys. Rev. Lett.61, 2332

~1988!.
@22# H. Chen, S. Chen, and W. H. Matthaeus, Phys. Rev. A45,

R5339~1992!.
@23# X. He and L.-S. Luo, Phys. Rev. E55, R6333~1997!.
@24# X. He and L.-S. Luo, Phys. Rev. E56, 6811~1997!.
@25# T. Abe, J. Comput. Phys.131, 241 ~1997!.
3-10



J.

gi-
o.

BULK AND SHEAR VISCOSITIES IN LATTICE . . . PHYSICAL REVIEW E 64 031203
@26# X. Shan and X. He, Phys. Rev. Lett.80, 65 ~1998!.
@27# P. J. Davis and P. Rabinowitz,Methods for Numerical Integra-

tion, 2nd ed.~Academic, New York, 1984!.
@28# X. He, X. Shan, and G. D. Doolen, Phys. Rev. E57, R13

~1998!.
@29# Y.-H. Qian and Y. Zhou, Phys. Rev. E61, 2103~2000!.
@30# J. M. Buick, C. L. Buckley, C. A. Greated, and J. Gilbert,
03120
Phys. A33, 3917~2000!.
@31# M. L. Minion and D. L. Brown, J. Comput. Phys.138, 734

~1997!.
@32# P. Lallemand and L.-S. Luo, Phys. Rev. E61, 6546 ~2000!,

also Institute for Computer Applications in Science and En
neering, NASA Langley Research Center, ICASE Report N
TR-2000-17.
3-11


